skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sitnov, M_I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Onset of reconnection in the tail requires the current sheet thickness to be of the order of the ion thermal gyroradius or smaller. However, existing isotropic plasma models cannot explain the formation of such thin sheets at distances where the X‐lines are typically observed. Here we reproduce such thin and long sheets in particle‐in‐cell simulations using a new model of their equilibria with weakly anisotropic ion species assuming quasi‐adiabatic ion dynamics, which substantially modifies the current density. It is found that anisotropy/agyrotropy contributions to the force balance in such equilibria are comparable to the pressure gradient in spite of weak ion anisotropy. New equilibria whose current distributions are substantially overstretched compared to the magnetic field lines are found to be stable in spite of the fact that they are substantially longer than isotropic sheets with similar thickness. 
    more » « less
  2. Abstract There is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth’s magnetosphere. 
    more » « less
  3. Abstract Reconstruction of the magnetic field, electric current, and plasma pressure is provided using a new data mining (DM) method with weighted nearest neighbors (NN) for strong storms with the storm activity indexSym‐H < −300 nT, the Bastille Day event (July 2000), and the 20 November 2003 superstorm. It is shown that the new method significantly reduces the statistical bias of the original NN algorithm toward weaker storms. In the DM approach the magnetic field is reconstructed using a small NN subset of the large historical database, with the subset numberKNN ≫ 1being still much larger than any simultaneous multiprobe observation number. This allows one to fit with observations a very flexible magnetic field model using basis function expansions for equatorial and field‐aligned currents, and at the same time, to keep the model sensitive to storm variability. This also allows one to calculate the plasma pressure by integrating the quasi‐static force balance equation with the isotropic plasma approximation. For strong storms of particular importance becomes the resolution of the eastward current, which prevents the divergence of the pressure integral. It is shown that in spite of the strong reduction of the dominant NN number in the new weighted NN algorithm to capture strong storm features, it is still possible to resolve the eastward current and to retrieve plasma pressure distributions. It is found that the pressure peak for strong storms may be as close as≈2.1REto Earth and its value may exceed 300 nPa. 
    more » « less